Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Orthop Surg ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488245

RESUMO

OBJECTIVE: Given the intricate challenges and potential complications associated with periacetabular osteotomy (PAO) for developmental dysplasia of the hip (DDH). Our study aimed to compare the clinical and imaging benefits and drawbacks of two surgical approaches, the modified Stoppa combined iliac spine approach and the modified Smith-Peterson approach, for treating PAO and to provide guidance for selecting clinical approaches. METHODS: A retrospective analysis of 56 patients with 62 DDHs was conducted from June 2018 to January 2022. The experimental group underwent surgery via the modified Stoppa combined iliac spine approach, while the control group underwent surgery via the modified Smith-Peterson approach for periacetabular osteotomy and internal fixation. Basic statistical parameters, including age, sex, BMI, and preoperative imaging data, were analyzed. Differences in surgical time, intraoperative blood loss, and postoperative imaging data were compared, as were differences in preoperative and postoperative imaging data between the two groups. RESULTS: There were 28 hips in the experimental group and 34 in the control group. Moreover, there was no significant difference in the basic parameters between the experimental and control groups. Before and after the operation, for the LCE angle, ACE angle, and Tonnis angle, there was no significant difference in acetabular coverage (p > 0.05). However, there were significant differences between the two groups in terms of the above four indicators before and after the operation (p < 0.05). After the operation, the experimental group exhibited significant increases in both lateral and anterior acetabular coverage of the femoral head. However, the experimental group had longer operation times and greater bleeding volumes than did the control group. Despite this, the experimental group demonstrated significant advantages in protecting the lateral femoral cutaneous nerve compared to the control group. CONCLUSION: The modified Stoppa combined iliac spine approach can be considered a practical approach for PAO and is more suitable for patients with DDH who plan to be treated by one operation than the classic modified Smith-Peterson approach for PAO.

2.
J Med Virol ; 96(3): e29547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511574

RESUMO

We have previously developed a bacterial artificial chromosome (BAC)-vectored SARS-CoV-2 replicon, namely BAC-CoV2-Rep, which, upon transfection into host cells, serves as a transcription template for SARS-CoV-2 replicon mRNA to initiate replicon replication and produce nanoluciferase (Nluc) reporter from the subgenomic viral mRNA. However, an inherent issue of such DNA-launched replicon system is that the nascent full-length replicon transcript undergoes process by host RNA splicing machinery, which reduces replicon replication and generates spliced mRNA species expressing NLuc reporter independent of replicon replication. To mitigate this problem, we employed Isoginkgetin, a universal eukaryotic host splicing inhibitor, to treat cells transfected with BAC-CoV2-Rep. Isoginkgetin effectively increased the level of full-length replicon transcripts while concurrently reducing the level of Nluc signal derived from spliced replicon mRNA, making the Nluc reporter signal more correlated with replicon replication, as evidenced by treatment with known SARS-CoV-2 replication inhibitors including Remdesivir, GC376, and EIDD-1931. Thus, our study emphasizes that host RNA splicing is a confounding factor for DNA-launched SARS-CoV-2 replicon systems, which can be mitigated by Isoginkgetin treatment.


Assuntos
Biflavonoides , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Replicon , RNA Mensageiro , Replicação Viral
3.
J Med Virol ; 96(2): e29485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377167

RESUMO

Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC. However, the significantly diverse tumor microbiome was only observed in HBV-related HCC, and Cutibacterium was identified as the representative taxa biomarker. Biological function of the unique tumor microbiota in modulating tumor microenvironment (TME) was characterized by using formalin-fixed paraffin-embedded (FFPE) tissue-based multiplex immunofluorescence histochemistry (mIFH) allowing simultaneous in situ detection of the liver cancer cells surrounded with high/low density of microbiota, and the infiltrating immune cells. In HBV_HCC, the intratumoral microbiota are positively associated with increased tumor-infiltrating CD8+ T lymphocytes, but not the CD56+ NK cells. Two subtypes of myeloid-derived suppressor cells (MDSCs): monocytic MDSCs and polymorphonuclear MDSCs, were also found to be positively correlated with the intratumoral microbiota in HBV_HCC, indicating an inhibitory role of these microbial species in antitumor immunity and the contribution to the liver TME in combination of chronic viral hepatitis during HCC development.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Hepatite C , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Hepatite C/complicações , Hepatite B/complicações , Hepatite B/patologia , Microambiente Tumoral
4.
Opt Express ; 32(3): 3912-3921, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297601

RESUMO

In this work, the concentration of rare-earth ions in doped silica whispering gallery lasers (WGLs) is controlled by evaporation. The fabrication of WGLs is used to experimentally evaluate the evaporation rate (mol/µm) and ratio (mol/mol) of erbium and silica lost from a doped fiber during heating. Fixed lengths of doped silica fiber are spliced to different lengths of undoped fiber and then evaporated by feeding into the focus of a CO2 laser. During evaporation, erbium ions are precipitated in the doped silica fiber to control the erbium concentration in the remaining SiO2, which is melted into a microsphere. By increasing the length of the undoped section, a critical point is reached where effectively no ions remain in the glass microsphere. The critical point is found using the spectra of the whispering gallery modes in microspheres with equal sizes. From the critical point, it is estimated that, for a given CO2 laser power, 6.36 × 10-21 mol of Er3+ is lost during the evaporation process for every cubic micron of silica fiber. This is equivalent to 1.74 × 10-7 mol of Er3+ lost per mol of SiO2 evaporated. This result facilitates the control of the doping concentration in WGLs and provides insight into the kinetics of laser-induced evaporation of doped silica.

5.
Mater Today Bio ; 24: 100899, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38188644

RESUMO

Constructing three-dimensional (3D) bioprinted skin tissues that accurately replicate the mechanical properties of native skin and provide adequate oxygen and nutrient support remains a formidable challenge. In this study, we incorporated phosphosilicate calcium bioglasses (PSCs), a type of bioactive glass (BG), into the bioinks used for 3D bioprinting. The resulting bioink exhibited mechanical properties and biocompatibility that closely resembled those of natural skin. Utilizing 3D bioprinting technology, we successfully fabricated full-thickness skin substitutes, which underwent comprehensive evaluation to assess their regenerative potential in treating full-thickness skin injuries in rats. Remarkably, the skin substitutes loaded with PSCs exhibited exceptional angiogenic activity, as evidenced by the upregulation of angiogenesis-related genes in vitro and the observation of enhanced vascularization in wound tissue sections in vivo. These findings conclusively demonstrated the outstanding efficacy of PSCs in promoting angiogenesis and facilitating the repair of full-thickness skin wounds. The insights garnered from this study provide a valuable reference strategy for the development of skin tissue grafts with potent angiogenesis-inducing capabilities.

6.
Bioact Mater ; 34: 466-481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38292412

RESUMO

Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.

7.
Antiviral Res ; 221: 105779, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070830

RESUMO

BACKGROUND: In the tolerogenic liver, inadequate or ineffective interferon signaling fails to clear chronic HBV infection. Lambda IFNs (IFNL) bind the interferon lambda receptor-1 (IFNLR1) which dimerizes with IL10RB to induce transcription of antiviral interferon-stimulated genes (ISG). IFNLR1 is expressed on hepatocytes, but low expression may limit the strength and antiviral efficacy of IFNL signaling. Three IFNLR1 transcriptional variants are detected in hepatocytes whose role in regulation of IFNL signaling is unclear: a full-length and signaling-capable form (isoform 1), a form that lacks a portion of the intracellular JAK1 binding domain (isoform 2), and a secreted form (isoform 3), the latter two predicted to be signaling defective. We hypothesized that altering expression of IFNLR1 isoforms would differentially impact the hepatocellular response to IFNLs and HBV replication. METHODS: Induced pluripotent stem-cell derived hepatocytes (iHeps) engineered to contain FLAG-tagged, doxycycline-inducible IFNLR1 isoform constructs were HBV-infected then treated with IFNL3 followed by assessment of gene expression, HBV replication, and cellular viability. RESULTS: Minimal overexpression of IFNLR1 isoform 1 markedly augmented ISG expression, induced de novo proinflammatory gene expression, and enhanced inhibition of HBV replication after IFNL treatment without adversely affecting cell viability. In contrast, overexpression of IFNLR1 isoform 2 or 3 partially augmented IFNL-induced ISG expression but did not support proinflammatory gene expression and minimally impacted HBV replication. CONCLUSIONS: IFNLR1 isoforms differentially influence IFNL-induced gene expression and HBV replication in hepatocytes. Regulated IFNLR1 expression in vivo could limit the capacity of this pathway to counteract HBV replication.


Assuntos
Vírus da Hepatite B , Interferon lambda , Interferons/farmacologia , Hepatócitos , Replicação Viral , Antivirais/farmacologia , Antivirais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Expressão Gênica
8.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948998

RESUMO

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Assuntos
COVID-19 , Fibrose Pulmonar , Insuficiência Respiratória , Humanos , COVID-19/complicações , COVID-19/patologia , Fibrose Pulmonar/patologia , Autopsia , SARS-CoV-2 , Pulmão/patologia , Macrófagos/patologia , Insuficiência Respiratória/patologia , Apoptose
9.
ACS Nano ; 17(20): 20643-20653, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37796635

RESUMO

Here, by introducing polystyrenesulfonate (PSS) as a multifunctional bridging molecule to synchronously coordinate the interaction between the precursor and the structure-directing agent, we developed a mesoporous conductive polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) featuring adjustable size in the range of 105-1836 nm, open nanochannels, large specific surface area (105.5 m2 g-1), and high electrical conductivity (172.9 S cm-1). Moreover, a large-area ultrathin PEDOT:PSS thin film with well-defined mesopores can also be obtained by controllable growth on various functional interfaces. As an example, we demonstrated that the iodine-loaded mesoporous PEDOT:PSS nanospheres can serve as a promising cathode for aqueous zinc-iodine batteries with high specific capacity (241 mAh g-1), excellent rate performance, and superlong 20,000 cycle life. In-depth theoretical calculations and systematic experimental results together reveal that the exposed sulfur- and oxygen-containing functional groups hold strong interactions with iodine species, resulting in effectively anchoring iodine species and inhibiting the shuttling of polyiodide intermediates, thus ensuring the long-term stability of the batteries. This work introduces a member to the family of mesoporous materials as well as porous polymers with versatile applications.

10.
J Virol ; 97(10): e0076023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754759

RESUMO

IMPORTANCE: The biogenesis and clinical application of serum HBV pgRNA have been a research hotspot in recent years. This study further characterized the heterogeneity of the 3' terminus of capsid RNA by utilizing a variety of experimental systems conditionally supporting HBV genome replication and secretion, and reveal that the 3' truncation of capsid pgRNA is catalyzed by cellular ribonuclease(s) and viral RNaseH at positions after and before 3' DR1, respectively, indicating the 3' DR1 as a boundary between the encapsidated portion of pgRNA for reverse transcription and the 3' unprotected terminus, which is independent of pgRNA length and the 3' terminal sequence. Thus, our study provides new insights into the mechanism of pgRNA encapsidation and reverse transcription, as well as the optimization of serum HBV RNA diagnostics.


Assuntos
Capsídeo , Genoma Viral , Vírus da Hepatite B , RNA Viral , Replicação Viral , Capsídeo/metabolismo , Genoma Viral/genética , Hepatite B/diagnóstico , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Transcrição Reversa , Ribonuclease H/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética
11.
J Med Virol ; 95(7): e28952, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37455550

RESUMO

The presence of hepatitis B virus (HBV) covalently closed circular (ccc) DNA (cccDNA), which serves as a template for viral replication and integration of HBV DNA into the host cell genome, sustains liver pathogenesis and constitutes an intractable barrier to the eradication of chronic HBV infection. The current antiviral therapy for HBV infection, using nucleos(t)ide analogues (NAs), can suppress HBV replication but cannot eliminate integrated HBV DNA and episomal cccDNA. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is a powerful genetic tool that can edit integrated HBV DNA and minichromosomal cccDNA for gene therapy, but its expression and delivery require a viral vector, which poses safety concerns for therapeutic applications in humans. In the present study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a nonviral formulation to develop a novel CRISPR/Cas9-mediated gene therapy for eradicating HBV infection. We designed a series of gRNAs targeting multiple specific HBV genes and tested their antiviral efficacy and cytotoxicity in different HBV cellular models. Transfection of stably HBV-infected human hepatoma cell line HepG2.2.15 with HBV-specific gRNA/Cas9 RNPs resulted in a substantial reduction in HBV transcripts. Specifically, gRNA5 and/or gRNA9 RNPs significantly reduced HBV cccDNA, total HBV DNA, pregenomic RNA, and HBV antigen (HBsAg, HBeAg) levels. T7 endonuclease 1 (T7E1) cleavage assay and DNA sequencing confirmed specific HBV gene cleavage and mutations at or around the gRNA target sites. Notably, this gene-editing system did not alter cellular viability or proliferation in the treated cells. Because of their rapid DNA cleavage capability, low off-target effects, low risk of insertional mutagenesis, and readiness for use in clinical application, these results suggest that synthetic gRNA/Cas9 RNP-based gene-editing can be utilized as a promising therapeutic drug for eradicating chronic HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , DNA Viral/genética , DNA Viral/metabolismo , Sistemas CRISPR-Cas , Vírus da Hepatite B/genética , Replicação Viral , RNA/metabolismo , RNA/farmacologia , DNA Circular/genética
12.
Acta Physiol (Oxf) ; 239(1): e14018, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401731

RESUMO

AIM: Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored. METHODS: Loss- and gain-of-function approaches were used to investigate the role of MFN2 in cardiac response to HH. In vitro, the function of MFN2 in the contraction of primary neonatal rat cardiomyocytes under hypoxia was examined. Non-targeted metabolomics and mitochondrial respiration analyses, as well as functional experiments were performed to explore underlying molecular mechanisms. RESULTS: Our data demonstrated that, following 4 weeks of HH, cardiac-specific MFN2 knockout (MFN2 cKO) mice exhibited significantly better cardiac function than control mice. Moreover, restoring the expression of MFN2 clearly inhibited the cardiac response to HH in MFN2 cKO mice. Importantly, MFN2 knockout significantly improved cardiac metabolic reprogramming during HH, resulting in reduced capacity for fatty acid oxidation (FAO) and oxidative phosphorylation, and increased glycolysis and ATP production. In vitro data showed that down-regulation of MFN2 promoted cardiomyocyte contractility under hypoxia. Interestingly, increased FAO through palmitate treatment decreased contractility of cardiomyocyte with MFN2 knockdown under hypoxia. Furthermore, treatment with mdivi-1, an inhibitor of mitochondrial fission, disrupted HH-induced metabolic reprogramming and subsequently promoted cardiac dysfunction in MFN2-knockout hearts. CONCLUSION: Our findings provide the first evidence that down-regulation of MFN2 preserves cardiac function in chronic HH by promoting cardiac metabolic reprogramming.


Assuntos
Mitocôndrias , Miócitos Cardíacos , Animais , Camundongos , Ratos , Hidrolases/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo
13.
Opt Express ; 31(15): 24110-24126, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475246

RESUMO

We investigate the power scaling and thermal management of multi-point side-pumped 2.825 µm heavily-erbium-doped fluoride fiber lasers by numerical simulation. The 4-point (or 6-point) erbium-doped fluoride fiber laser with polished erbium-doped fluoride fiber-based side-pump couplers delivers an output laser power of over 100 W at each launched 981 nm pump power of 100 W (or 75 W). Meanwhile, the core temperature increases of the gain fiber tips are below 1 K, making it possible for a highly reflective fiber Bragg grating to work stably in high-power operation. Once the preparation processes of these erbium-doped fluoride fiber-based side-pump couplers and endcaps with effective coatings are mature, the proposed multi-point side-pumped erbium-doped fluoride fiber lasers with some feasibility may theoretically pave the way for the development of hundred-watt mid-infrared fiber lasers with effective thermal management.

14.
Opt Express ; 31(13): 22113-22126, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381293

RESUMO

Mid-infrared fiber combiners have great potential in power and spectral combination. However, studies on mid-infrared transmission optical field distributions using these combiners are limited. In this study, we designed and fabricated a 7 × 1 multimode fiber combiner based on sulfur-based glass fibers and observed approximately 80% per-port transmission efficiency at 4.778 µm wavelength. We investigated the propagation properties of the prepared combiners and explored the effects of transmission wavelength, output fiber length, and fusion deviation on the transmitted optical field and beam quality factor M2. Additionally, we assessed the effect of coupling on the excitation mode and spectral combination of the mid-infrared fiber combiner for multiple light sources. Our results provide an in-depth understanding of the propagation properties of the mid-infrared multimode fiber combiners, which may find applications in high-beam-quality laser devices.

15.
Biochim Biophys Acta Gen Subj ; 1867(9): 130413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331409

RESUMO

BACKGROUND: Rapid ascent to high-altitude environment which is characterized by acute hypobaric hypoxia (HH) may increase the risk of cardiac dysfunction. However, the potential regulatory mechanisms and prevention strategies for acute HH-induced cardiac dysfunction have not been fully clarified. Mitofusin 2 (MFN2) is highly expressed in the heart and is involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the significance of MFN2 in the heart under acute HH has not been investigated. METHODS AND RESULTS: Our study revealed that MFN2 upregulation in hearts of mice during acute HH led to cardiac dysfunction. In vitro experiments showed that the decrease in oxygen concentration induced upregulation of MFN2, impairing cardiomyocyte contractility and increasing the risk of QT prolongation. Additionally, acute HH-induced MFN2 upregulation promoted glucose catabolism and led to excessive mitochondrial reactive oxygen species (ROS) production in cardiomyocytes, ultimately resulting in decreased mitochondrial function. Furthermore, co-immunoprecipitation (co-IP) and mass spectrometry analyses indicated that MFN2 interacted with the NADH-ubiquinone oxidoreductase 23 kDa subunit (NDUFS8). Specifically, acute HH-induced MFN2 upregulation increased NDUFS8-dependent complex I activity. CONCLUSIONS: Taken together, our studies provide the first direct evidence that MFN2 upregulation exacerbates acute HH-induced cardiac dysfunction by increasing glucose catabolism and ROS production. GENERAL SIGNIFICANCE: Our studies indicate that MFN2 may be a promising therapeutic target for cardiac dysfunction under acute HH.


Assuntos
Cardiopatias , Dinâmica Mitocondrial , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Cardiopatias/metabolismo , Hipóxia/metabolismo , Glucose/metabolismo
16.
Mater Today Bio ; 20: 100639, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37197743

RESUMO

Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.

17.
J Med Virol ; 95(4): e28749, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185850

RESUMO

Hepatitis B Virus (HBV) replication has been reported to be restricted by the intrahepatic host restriction factors and antiviral signaling pathways. The intracellular mechanisms underlying the significant viremia difference among different phases of the natural history chronic HBV infection remain elusive. We herein report that the hypoxia-induced gene domain protein-1a (HIGD1A) was highly expressed in the liver of inactive HBV carriers with low viremia. Ectopic expression of HIGD1A in hepatocyte-derived cells significantly inhibited HBV transcription and replication in a dose-dependent manner, while silence of HIGD1A promoted HBV gene expression and replication. Similar results were also observed in both de novo HBV-infected cell culture model and HBV persistence mouse model. Mechanistically, HIGD1A is located on the mitochondrial inner membrane and activates nuclear factor kappa B (NF-κB) signaling pathway through binding to paroxysmal nonkinesigenic dyskinesia (PNKD), which further enhances the expression of a transcription factor NR2F1 to inhibit HBV transcription and replication. Consistently, knockdown of PNKD or NR2F1 and blockage of NF-κB signaling pathway abrogated the inhibitory effect of HIGD1A on HBV replication. Mitochondrial HIGD1A exploits the PNKD-NF-κB-NR2F1 nexus to act as a host restriction factor of HBV infection. Our study thus shed new lights on the regulation of HBV by hypoxia-related genes and related antiviral strategies.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Camundongos , Antivirais/farmacologia , Vírus da Hepatite B/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transcrição Viral , Viremia , Replicação Viral , Humanos
18.
Front Oncol ; 13: 1140256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064109

RESUMO

Background: Near-infrared fluorescence (NIRF) imaging has recently emerged as a promising tool for noninvasive cancer imaging. However, lack of tumor sensitivity and specificity restricts the application of NIRF dyes in surgical navigation. Methods: Herein, we investigated the imaging features of NIRF dye MHI-148 and indocyanine green (ICG) in live cell imaging and xenograft nude mice models. TCGA dataset analysis and immunohistochemistry were conducted to investigate the expression of OATPs or ABCGs in hepatocellular carcinoma (HCC) tissues. OATPs or ABCGs were knocked down and overexpressed in HCC cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Further, qRT-PCR ,Western blotting and the use of agonists or inhibitors targeting ß-catenin signaling pathway were applied to explore its important role in regulation of OATP2B1 and ABCG2 expression. Results: Here we demonstrated that NIRF dye MHI-148 was biocompatible as indocyanine green (ICG) but with higher imaging intensity and preferential uptake and retention in hepatocellular carcinoma (HCC) cells and tissues. Moreover, our data indicated that membrane transporters OATP2B1 and ABCG2, which regulated by ß-catenin signaling pathway, mediated tumor-specific accumulation and retention of MHI-148 in HCC cells. In addition, the treatment with ß-catenin inhibitor significantly enhanced the accumulation of MHI-148 in HCC tissues and improved the efficacy of tumor imaging with MHI-148 in vivo. Conclusions: Our study uncovers a mechanism that links the distribution and expression of the membrane transporters OATP2B1 and ABCG2 to the tumor-specific accumulation of MHI-148, and provides evidence supporting a regulating role of the ß-catenin signaling pathway in OATP2B1 and ABCG2- induced retention of MHI-148 inHCC tissues, and strategy targeting key components of MHI-148 transport machinery may be a potential approach to improve HCC imaging.

19.
Adv Mater ; 35(30): e2212114, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36876459

RESUMO

Cartilage equivalents from hydrogels containing chondrocytes exhibit excellent potential in hyaline cartilage regeneration, yet current approaches have limited success at reconstituting the architecture to culture nondifferentiated chondrocytes in vitro. In this study, specially designed lacunar hyaluronic acid microcarriers (LHAMCs) with mechanotransductive conditions that rapidly form stable hyaluronic acid (HA) N-hydroxy succinimide ester (NHS-ester) are reported. Specifically, carboxyl-functionalized HA is linked to collagen type I via amide-crosslinking, and gas foaming produced by ammonium bicarbonate forms concave surface of the microcarriers. The temporal 3D culture of chondrocytes on LHAMCs uniquely remodels the extracellular matrix to induce hyaline cartilaginous microtissue regeneration and prevents an anaerobic-to-aerobic metabolism transition in response to the geometric constraints. Furthermore, by inhibiting the canonical Wnt pathway, LHAMCs prevent ß-catenin translocation to the nucleus, repressing chondrocyte dedifferentiation. Additionally, the subcutaneous implantation model indicates that LHAMCs display favorable cytocompatibility and drive robust hyaline chondrocyte-derived neocartilage formation. These findings reveal a novel strategy for regulating chondrocyte dedifferentiation. The current study paves the way for a better understanding of geometrical insight clues into mechanotransduction interaction in regulating cell fate, opening new avenues for advancing tissue engineering.


Assuntos
Hialina , Ácido Hialurônico , Ácido Hialurônico/metabolismo , Mecanotransdução Celular , Cartilagem , Condrócitos , Engenharia Tecidual
20.
Opt Express ; 31(5): 7659-7670, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859893

RESUMO

Chalcogenide hollow-core anti-resonant fibers (HC-ARFs) are a promising propagation medium for high-power mid-infrared (3-5 µm) laser delivery, while their properties have not been well understood and their fabrications remain challenging. In this paper, we design a seven-hole chalcogenide HC-ARF with touching cladding capillaries, which was then fabricated from purified As40S60 glass by combining the "stack-and-draw" method with a dual gas path pressure control technique. In particular, we predict theoretically and confirm experimentally that such medium exhibits higher-order mode suppression properties and several low-loss transmission bands in the mid-infrared spectrum, with the measured fiber loss being as low as 1.29 dB/m at 4.79 µm. Our results pave the way for the fabrication and implication of various chalcogenide HC-ARFs in mid-infrared laser delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...